Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 76: 364-373, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29798807

RESUMO

An examination of the processes contributing to the production of landfill greenhouse gas (GHG) emissions is required, as the actual level to which waste degrades anaerobically and aerobically beneath covers has not been differentiated. This paper presents a methodology to distinguish between the rate of anaerobic digestion (rAD), composting (rCOM) and CH4 oxidation (rOX) in a landfill environment, by means of a system of mass balances developed for molecular species (CH4, CO2) and stable carbon isotopes (δ13C-CO2 and δ13C-CH4). The technique was applied at two sampling locations on a sloped area of landfill. Four sampling rounds were performed over an 18 month period after a 1.0 m layer of fresh waste and 30-50 cm of silty clay loam had been placed over the area. Static chambers were used to measure the flux of the molecular and isotope species at the surface and soil gas probes were used to collect gas samples at depths of approximately 0.5, 1.0 and 1.5 m. Mass balances were based on the surface flux and the concentration of the molecular and isotopic species at the deepest sampling depth. The sensitivity of calculated rates was considered by randomly varying stoichiometric and isotopic parameters by ±5% to generate at least 500 calculations of rOX, rAD and rCOM for each location in each sampling round. The resulting average value of rAD and rCOM indicated anaerobic digestion and composting were equally dominant at both locations. Average values of rCOM: ranged from 9.8 to 44.5 g CO2 m-2 d-1 over the four sampling rounds, declining monotonically at one site and rising then falling at the other. Average values of rAD: ranged from 10.6 to 45.3 g CO2 m-2 d-1. Although the highest average rAD value occurred in the initial sampling round, all subsequent rAD values fell between 10 and 20 g CO2 m-2 d-1. rOX had the smallest activity contribution at both sites, with averages ranging from 1.6 to 8.6 g CO2 m-2 d-1. This study has demonstrated that for an interim cover, composting and anaerobic digestion of shallow landfill waste can occur simultaneously.


Assuntos
Compostagem , Metano/análise , Instalações de Eliminação de Resíduos , Eliminação de Resíduos , Solo
2.
Waste Manag ; 71: 156-163, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29126823

RESUMO

The aim of this paper was to apply and validate a model for measuring the rate and extent of anaerobic digestion, composting and CH4 oxidation in laboratory scale beds. Degradation studies were performed in four reactors each packed with shredded unsorted municipal solid waste, with one bed covered with a 100 mm layer of soil. The rates of production of CH4, CO2, 13C-CO2 and the rate of consumption of O2 were measured and used as inputs to a mass balance expressions for these components to calculate the rates of anaerobic digestion, composting and CH4 oxidation. The results showed that anaerobic digestion, composting and CH4 oxidation occurred simultaneously in both the covered and uncovered beds. The analysis showed that 50 ±â€¯4% of the solids (COD basis) in the uncovered beds degraded anaerobically, with the generated CH4 subsequently oxidized, and that 32 ±â€¯4% of the solids degraded aerobically in the covered bed.


Assuntos
Compostagem , Metano/química , Eliminação de Resíduos , Solo , Resíduos Sólidos
3.
Waste Manag ; 63: 196-202, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28089399

RESUMO

Although CH4 oxidation in landfill soil covers is widely studied, the extent of composting and CH4 oxidation in underlying waste layers has been speculated but not measured. The objective of this study was to develop and validate a mass balance model to estimate the simultaneous rates of anaerobic digestion (rAD), CH4 oxidation (rOX) and composting (rCOM) in environments where O2 penetration is variable and zones of aerobic and anaerobic activity are intermingled. The modelled domain could include, as an example, a soil cover and the underlying shallow waste to a nominated depth. The proposed model was demonstrated on a blend of biogas from three separate known sources of gas representing the three reaction processes: (i) a bottle of laboratory grade 50:50% CH4:CO2 gas representing anaerobic digestion biogas; (ii) an aerated 250mL bottle containing food waste that represented composting activity; and (iii) an aerated 250mL bottle containing non-degradable graphite granules inoculated with methanotrophs and incubated with CH4 and O2 to represent methanotrophic activity. CO2, CH4, O2 and the stable isotope 13C-CO2 were chosen as the components for the mass balance model. The three reaction rates, r (=rAD, rOX, rCOM) were calculated as fitting parameters to the overdetermined set of 4mass balance equations with the net flux of these components from the bottles q (= [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] ) as inputs to the model. The coefficient of determination (r2) for observed versus modelled values of r were 1.00, 0.97, 0.98 when the stoichiometry of each reaction was based on gas yields measured in the individual bottles and q was calculated by summing yields from the three bottles. r2 deteriorated to 0.95, 0.96, 0.87 when using an average stoichiometry from 11 incubations of each of the composting and methane oxidation processes. The significant deterioration in the estimation of rCOM showed that this output is highly sensitive to the evaluated stoichiometry coefficients for the reactions. r2 deteriorated further to 0.86, 0.77, 0.74 when using the average stoichiometry and experimental measurement of the composition and volume of the blended biogas to determine q. This was primarily attributed to average errors of 8%, 7%, 11% and 14% in the measurement of [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] relative to the measurement of the same quantities from the individual bottles.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos/estatística & dados numéricos , Modelos Químicos , Oxirredução , Eliminação de Resíduos/estatística & dados numéricos , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...